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Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

0 Major
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

0 Medium
Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

4 Minor 4 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

4 Informational 4 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.
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The security assessment was prepared by CertiK, the leader in Web3.0 security.
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CODEBASE TOMI
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AUDIT SCOPE TOMI

4 files audited 2 files with Acknowledged findings 2 files without findings

ID File SHA256 Checksum

IPF contracts/IPriceFeed.sol
5f40b74801e9041a0756e588acf54b49117ab

22397c936c2eafac6daa53e25e1

TOM contracts/Tomi.sol
a0c675b36a7bce3e87b52e25c91e9fe789187

7572e801356f34f164bcc5f71cf

IMP contracts/import.sol
fbd2dbc1a472e4e58973c7554b906b2fb5012

114018ce69bf6f13a0de5b949fa

IPN contracts/IPioneerNFT.sol
f5028df35930b749a1e31c94b2ff7acf35604f6

dde854aba0a37a7cec2b87a1a
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APPROACH & METHODS TOMI

This report has been prepared for Tomi to discover issues and vulnerabilities in the source code of the Tomi project as well as

any contract dependencies that were not part of an officially recognized library. A comprehensive examination has been

performed, utilizing Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.
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DECENTRALIZATION EFFORTS TOMI

Description

In the contract Tomi , the role owner  has authority over the following functions:

updateMarketingWallet

updateCoreTeamWallet

updateFutureTeamWallet

updateEmissions

fundDao

transferOwnership

renounceOwnership

In the contract Tomi , the role nftContract  has authority over the following functions:

mintThroughNft

In the contract Tomi , the role vestingContract  has authority over the following functions:

mintThroughVesting

Any compromise to these accounts may allow a hacker to take advantage of these authorities.

Besides, the Tomi  token is upgradeable, the owner can upgrade the contract logic without the community's commitment. If

an attacker compromises the account, he can change the implementation of the contract and drain tokens from the contract.

Recommendations

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

DECENTRALIZATION EFFORTS TOMI



Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviations

[ Tomi ]: Issue acknowledged.
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FINDINGS TOMI

This report has been prepared to discover issues and vulnerabilities for Tomi. Through this audit, we have uncovered 8

issues ranging from different severity levels. Utilizing the techniques of Static Analysis & Manual Review to complement

rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

COC-01 Third Party Dependency Volatile Code Minor Acknowledged

TOM-01 Uninitialized State Variable Coding Style Minor Acknowledged

TOM-02 Unprotected Initializer Coding Style Minor Acknowledged

TOM-03 Missing Zero Address Validation Volatile Code Minor Acknowledged

TOM-04 Missing Emit Events Coding Style Informational Acknowledged

TOM-05 Unused Event Coding Style Informational Acknowledged

TOM-06 Too Many Digits Coding Style Informational Acknowledged

TOM-07 Redundant Statements Volatile Code Informational Acknowledged

FINDINGS TOMI

8
Total Findings

0
Critical

0
Major

0
Medium

4
Minor

4
Informational



COC-01 THIRD PARTY DEPENDENCY

Category Severity Location Status

Volatile

Code
Minor

contracts/IPriceFeed.sol (Implementation ): 3; contracts/Tomi.sol (I

mplementation ): 36, 37, 143
Acknowledged

Description

The contract is serving as the underlying entity to interact with one or more third party protocols. The scope of the audit treats

third party entities as black boxes and assume their functional correctness. However, in the real world, third parties can be

compromised and this may lead to lost or stolen assets. In addition, upgrades of third parties can possibly create severe

impacts, such as increasing fees of third parties, migrating to new LP pools, etc.

36     IPioneerNFT public nftContract;

The contract Tomi  interacts with third party contract with IPioneerNFT  interface via nftContract .

37     address public vestingContract;

The contract Tomi  interacts with third party contract with vestingContract  interface via vestingContract .

143         uint256 tomiPrice = 

IPriceFeed(0x4c7f63B6105Ff95963fC79dB8111628fa014769b).getTomiPrice(); // Price 

Oracle

This expression interacts with a third party contract with IPriceFeed  interface.

Recommendation

We understand that the business logic requires interaction with the third parties. We encourage the team to constantly

monitor the statuses of third parties to mitigate the side effects when unexpected activities are observed.

Alleviation

[ Tomi ]: These third-party contracts are owned and deployed by us. We monitor them on daily basis and their interacting

functions are strictly conditioned and monitored.

COC-01 TOMI



TOM-01 UNINITIALIZED STATE VARIABLE

Category Severity Location Status

Coding Style Minor contracts/Tomi.sol (Implementation ): 36, 37 Acknowledged

Description

One or more state variables are used without being initialized. Also, there is no function to set them.

36     IPioneerNFT public nftContract;

nftContract  is never initialized, but used in Tomi.mintThroughNft .

37     address public vestingContract;

vestingContract  is never initialized, but used in:

Recommendation

We recommend initializing the state variables at declaration or in the initializer , or adding a setter function. If a variable

is meant to be initialized to zero, explicitly set it to zero to improve code readability.

Alleviation

[ Tomi ]: Some of the state variables are left uninitialized as to keep the upgradeability standard intact. These variables need

to be set only once and there was a setter function in the previous implementation and it has been upgraded and removed to

avoid security risks.
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TOM-02 UNPROTECTED INITIALIZER

Category Severity Location Status

Coding Style Minor contracts/Tomi.sol (Implementation ): 80 Acknowledged

Description

One or more logic contracts do not protect their initializers. An attacker can call the initializer and assume ownership of the

logic contract, whereby she can perform privileged operations that trick unsuspecting users into believing that she is the

owner of the upgradeable contract.

11 contract Tomi is Initializable, ERC20Upgradeable, OwnableUpgradeable {

Tomi  is an upgradeable contract that does not protect its initializer.

80     function initialize() initializer public {

initialize  is an unprotected initializer function.

Recommendation

We advise calling _disableInitializers  in the constructor or giving the constructor the initializer  modifier to prevent

the intializer from being called on the logic contract.

Reference: https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-

upgradeable#initializing_the_implementation_contract

Alleviation

[ Tomi ]: We will add and protect the initialize function at the implementation contract on next upgrade surely.

TOM-02 TOMI
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TOM-03 MISSING ZERO ADDRESS VALIDATION

Category Severity Location Status

Volatile Code Minor contracts/Tomi.sol (Implementation ): 87, 92, 97 Acknowledged

Description

Addresses should be checked before assignment or external call to make sure they are not zero addresses.

87         marketingWallet = newAddress;

newAddress  is not zero-checked before being used.

92         coreTeamWallet = newAddress;

newAddress  is not zero-checked before being used.

97         futureTeamWallet = newAddress;

newAddress  is not zero-checked before being used.

Recommendation

We advise adding a zero-check for the passed-in address value to prevent unexpected errors.

Alleviation

[ Tomi ]: These addresses change function can only be called by DAO on 2 weeks of voting period and thoroughly checked,

but we will still add a zero address validation check on next upgrade.
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TOM-04 MISSING EMIT EVENTS

Category Severity Location Status

Coding Style Informational contracts/Tomi.sol (Implementation ): 116, 125, 141 Acknowledged

Description

There should always be events emitted in the sensitive functions that are controlled by centralization roles.

Recommendation

It is recommended emitting events for the sensitive functions that are controlled by centralization roles.

Alleviation

[ Tomi ]: These Lines of code are calling the _mint function which has a mint event emitted in it by default. But we'll for sure

add a custom event relating to the function call and emit it on next upgrade.
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TOM-05 UNUSED EVENT

Category Severity Location Status

Coding Style Informational contracts/Tomi.sol (Implementation ): 73~78 Acknowledged

Description

73     event daoFunded(

74         uint256 timestamp,

75         uint256 tomiAmount,

76         uint256 tomiPrice,

77         address treasury

78     );

daoFunded  is declared in Tomi  but never emitted.

Recommendation

We advise emitting it in the function fundDao() .

Alleviation

[ Tomi ]: This event will be used in fundDao function and will be emitted accordingly in next upgrade.
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TOM-06 TOO MANY DIGITS

Category Severity Location Status

Coding Style Informational contracts/Tomi.sol (Implementation ): 144 Acknowledged

Description

Literals with many digits are difficult to read and review.

144         uint256 tomiAmount = 

uint256(1000000000000000000000000000000000).div(tomiPrice); // 10 Million => 

10_000_000^26

Recommendation

We advise the client to ensure the correctness of the number and use the scientific notation to improve readability.

Alleviation

[ Tomi ]: The number will be converted to scientific notation in the future upgrade.
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TOM-07 REDUNDANT STATEMENTS

Category Severity Location Status

Volatile Code Informational contracts/Tomi.sol (Implementation ): 39 Acknowledged

Description

State variables that never used can be removed to save gas.

39     uint256 public totalMined;

Recommendation

We recommend removing the unused state variables that never used.

Alleviation

[ Tomi ]: These variables were put for future use which is yet to be finalized in current roadmap. We didn't risked removed

the storage variables for preserving the upgradeability nature. These will be handled on further clarification of protocol

roadmap.

TOM-07 TOMI



FORMAL VERIFICATION TOMI

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied automated formal

verification (symbolic model checking) to prove that well-known functions in the smart contracts adhere to their expected

behavior.

Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.

Verification of ERC-20 Compliance

We verified properties of the public interface of those token contracts that implement the ERC-20 interface. This covers

Functions transfer  and transferFrom  that are widely used for token transfers,

functions approve  and allowance  that enable the owner of an account to delegate a certain subset of her tokens

to another account (i.e. to grant an allowance), and

the functions balanceOf  and totalSupply , which are verified to correctly reflect the internal state of the contract.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

erc20-transfer-revert-zero transfer  Prevents Transfers to the Zero Address

erc20-transfer-correct-amount transfer  Transfers the Correct Amount in Non-self Transfers

erc20-transfer-correct-amount-self transfer  Transfers the Correct Amount in Self Transfers

erc20-transfer-succeed-normal transfer  Succeeds on Admissible Non-self Transfers

erc20-transfer-succeed-self transfer  Succeeds on Admissible Self Transfers

erc20-transfer-exceed-balance transfer  Fails if Requested Amount Exceeds Available Balance

erc20-transfer-change-state transfer  Has No Unexpected State Changes

erc20-transfer-false If transfer  Returns false , the Contract State Is Not Changed

erc20-transfer-recipient-overflow transfer  Prevents Overflows in the Recipient's Balance

erc20-transfer-never-return-false transfer  Never Returns false

FORMAL VERIFICATION TOMI



Property Name Title

erc20-transferfrom-revert-from-zero transferFrom  Fails for Transfers From the Zero Address

erc20-transferfrom-revert-to-zero transferFrom  Fails for Transfers To the Zero Address

erc20-transferfrom-correct-amount-self transferFrom  Performs Self Transfers Correctly

erc20-transferfrom-correct-amount transferFrom  Transfers the Correct Amount in Non-self Transfers

erc20-transferfrom-succeed-normal transferFrom  Succeeds on Admissible Non-self Transfers

erc20-transferfrom-succeed-self transferFrom  Succeeds on Admissible Self Transfers

erc20-transferfrom-fail-exceed-balance
transferFrom  Fails if the Requested Amount Exceeds the Available

Balance

erc20-transferfrom-correct-allowance transferFrom  Updated the Allowance Correctly

erc20-transferfrom-change-state transferFrom  Has No Unexpected State Changes

erc20-transferfrom-fail-exceed-allowance
transferFrom  Fails if the Requested Amount Exceeds the Available

Allowance

erc20-transferfrom-false If transferFrom  Returns false , the Contract's State Is Unchanged

erc20-transferfrom-fail-recipient-overflow transferFrom  Prevents Overflows in the Recipient's Balance

erc20-totalsupply-succeed-always totalSupply  Always Succeeds

erc20-transferfrom-never-return-false transferFrom  Never Returns false

erc20-totalsupply-correct-value totalSupply  Returns the Value of the Corresponding State Variable

erc20-totalsupply-change-state totalSupply  Does Not Change the Contract's State

erc20-balanceof-succeed-always balanceOf  Always Succeeds

erc20-balanceof-correct-value balanceOf  Returns the Correct Value

erc20-balanceof-change-state balanceOf  Does Not Change the Contract's State

erc20-allowance-succeed-always allowance  Always Succeeds

erc20-allowance-correct-value allowance  Returns Correct Value

erc20-allowance-change-state allowance  Does Not Change the Contract's State

FORMAL VERIFICATION TOMI



Property Name Title

erc20-approve-revert-zero approve  Prevents Approvals For the Zero Address

erc20-approve-succeed-normal approve  Succeeds for Admissible Inputs

erc20-approve-correct-amount approve  Updates the Approval Mapping Correctly

erc20-approve-change-state approve  Has No Unexpected State Changes

erc20-approve-false If approve  Returns false , the Contract's State Is Unchanged

erc20-approve-never-return-false approve  Never Returns false

Verification Results

In the remainder of this section, we list all contracts where model checking of at least one property was not successful. There

are several reasons why this could happen:

Model checking reports a counterexample that violates the property. Depending on the counterexample,this occurs if

The specification of the property is too generic and does not accurately capture the intended behavior of

the smart contract. In that case, the counterexample does not indicate a problem in the underlying smart

contract. We report such instances as being "inapplicable".

The property is applicable to the smart contract. In that case, the counterexample showcases a problem

in the smart contract and a correspond finding is reported separately in the Findings section of this

report. In the following tables, we report such instances as "invalid". The distinction between spurious

and actual counterexamples is done manually by the auditors.

The model checking result is inconclusive. Such a result does not indicate a problem in the underlying smart

contract. An inconclusive result may occur if

The model checking engine fails to construct a proof. This can happen if the logical deductions

necessary are beyond the capabilities of the automated reasoning tool. It is a technical limitation of all

proof engines and cannot be avoided in general.

The model checking engine runs out of time or memory and did not produce a result. This can happen if

automatic abstraction techniques are ineffective or of the state space is too big.

Detailed Results For Contract Tomi (contracts/Tomi.sol)
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Verification of ERC-20 Compliance

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero True

erc20-transfer-correct-amount True

erc20-transfer-correct-amount-self True

erc20-transfer-succeed-normal Inapplicable
The specification does not reflect the contract's

intended behavior.

erc20-transfer-succeed-self Inapplicable
The specification does not reflect the contract's

intended behavior.

erc20-transfer-exceed-balance True

erc20-transfer-change-state True

erc20-transfer-false True

erc20-transfer-recipient-overflow True

erc20-transfer-never-return-false True

FORMAL VERIFICATION TOMI



Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-from-zero True

erc20-transferfrom-revert-to-zero True

erc20-transferfrom-correct-amount-self True

erc20-transferfrom-correct-amount True

erc20-transferfrom-succeed-normal Inapplicable
The specification does not reflect the contract's

intended behavior.

erc20-transferfrom-succeed-self Inapplicable
The specification does not reflect the contract's

intended behavior.

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-change-state True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-false True

erc20-transferfrom-fail-recipient-overflow True

erc20-transferfrom-never-return-false True

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION TOMI



Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

FORMAL VERIFICATION TOMI



APPENDIX TOMI

Finding Categories

Categories Description

Volatile

Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that

may result in a vulnerability.

Coding

Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

Details on Formal Verification

Some Solidity smart contracts from this project have been formally verified using symbolic model checking. Each such

contract was compiled into a mathematical model which reflects all its possible behaviors with respect to the property. The

model takes into account the semantics of the Solidity instructions found in the contract. All verification results that we report

are based on that model.

Technical Description

The model also formalizes a simplified execution environment of the Ethereum blockchain and a verification harness that

performs the initialization of the contract and all possible interactions with the contract. Initially, the contract state is initialized

non-deterministically (i.e. by arbitrary values) and over-approximates the reachable state space of the contract throughout

any actual deployment on chain. All valid results thus carry over to the contract's behavior in arbitrary states after it has been

deployed.

Assumptions and Simplifications

The following assumptions and simplifications apply to our model:

Gas consumption is not taken into account, i.e. we assume that executions do not terminate prematurely because

they run out of gas.

The contract's state variables are non-deterministically initialized before invocation of any function. That ignores

contract invariants and may lead to false positives. It is, however, a safe over-approximation.
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The verification engine reasons about unbounded integers. Machine arithmetic is modeled using modular arithmetic

based on the bit-width of the underlying numeric Solidity type. This ensures that over- and underflow characteristics

are faithfully represented.

Certain low-level calls and inline assembly are not supported and may lead to a contract not being formally verified.

We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled

contract.

Formalism for Property Specification

All properties are expressed in linear temporal logic (LTL). For that matter, we treat each invocation of and each return from a

public or an external function as a discrete time step. Our analysis reasons about the contract's state upon entering and upon

leaving public or external functions.

Apart from the Boolean connectives and the modal operators "always" (written [] ) and "eventually" (written <> ), we use

the following predicates as atomic propositions. They are evaluated on the contract's state whenever a discrete time step

occurs:

started(f, [cond])  Indicates an invocation of contract function f  within a state satisfying formula cond .

willSucceed(f, [cond])  Indicates an invocation of contract function f  within a state satisfying formula cond

and considers only those executions that do not revert.

finished(f, [cond])  Indicates that execution returns from contract function f  in a state satisfying formula

cond . Here, formula cond  may refer to the contract's state variables and to the value they had upon entering the

function (using the old  function).

reverted(f, [cond])  Indicates that execution of contract function f  was interrupted by an exception in a

contract state satisfying formula cond .

The verification performed in this audit operates on a harness that non-deterministically invokes a function of the contract's

public or external interface. All formulas are analyzed w.r.t. the trace that corresponds to this function invocation.

Description of the Analyzed ERC-20 Properties

The specifications are designed such that they capture the desired and admissible behaviors of the ERC-20 functions

transfer , transferFrom , approve , allowance , balanceOf , and totalSupply . In the following, we list those

property specifications.

Properties related to function transfer

erc20-transfer-revert-zero

transfer  Prevents Transfers to the Zero Address. Any call of the form transfer(recipient, amount)  must fail if the

recipient address is the zero address. Specification:

[](started(contract.transfer(to, value), to == address(0)) ==>

  <>(reverted(contract.transfer) || finished(contract.transfer(to, value), return

    == false)))
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erc20-transfer-succeed-normal

transfer  Succeeds on Admissible Non-self Transfers. All invocations of the form transfer(recipient, amount)  must

succeed and return true  if

the recipient  address is not the zero address,

amount  does not exceed the balance of address msg.sender ,

transferring amount  to the recipient  address does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call. Specification:

[](started(contract.transfer(to, value), to != address(0) && to != msg.sender &&

    value >= 0 && value <= _balances[msg.sender] && _balances[to] + value <

    0x10000000000000000000000000000000000000000000000000000000000000000 &&

    _balances[to] >= 0 && _balances[msg.sender] <

    0x10000000000000000000000000000000000000000000000000000000000000000) ==>

  <>(finished(contract.transfer(to, value), return == true)))

erc20-transfer-succeed-self

transfer  Succeeds on Admissible Self Transfers. All self-transfers, i.e. invocations of the form transfer(recipient,

amount)  where the recipient  address equals the address in msg.sender  must succeed and return true  if

the value in amount  does not exceed the balance of msg.sender  and

the supplied gas suffices to complete the call. Specification:

[](started(contract.transfer(to, value), to != address(0) && to == msg.sender &&

    value >= 0 && value <= _balances[msg.sender] && _balances[msg.sender] >= 0 &&

    _balances[msg.sender] <

    0x10000000000000000000000000000000000000000000000000000000000000000) ==>

  <>(finished(contract.transfer(to, value), return == true)))

erc20-transfer-correct-amount

transfer  Transfers the Correct Amount in Non-self Transfers. All non-reverting invocations of transfer(recipient,

amount)  that return true  must subtract the value in amount  from the balance of msg.sender  and add the same value to

the balance of the recipient  address. Specification:
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[](willSucceed(contract.transfer(to, value), to != msg.sender && _balances[to] >= 0

    && value >= 0 && _balances[to] + value <

    0x10000000000000000000000000000000000000000000000000000000000000000 &&

    _balances[msg.sender] >= 0 && _balances[msg.sender] <

    0x10000000000000000000000000000000000000000000000000000000000000000) ==>

  <>(finished(contract.transfer(to, value), return == true ==>

      _balances[msg.sender] == old(_balances[msg.sender]) - value && _balances[to]

      == old(_balances[to]) + value)))

erc20-transfer-correct-amount-self

transfer  Transfers the Correct Amount in Self Transfers. All non-reverting invocations of transfer(recipient, amount)

that return true  and where the recipient  address equals msg.sender  (i.e. self-transfers) must not change the balance

of address msg.sender . Specification:

[](willSucceed(contract.transfer(to, value), to == msg.sender && _balances[to] >= 0

    && _balances[to] <

    0x10000000000000000000000000000000000000000000000000000000000000000) ==>

  <>(finished(contract.transfer(to, value), return == true ==> _balances[to] ==

      old(_balances[to]))))

erc20-transfer-change-state

transfer  Has No Unexpected State Changes. All non-reverting invocations of transfer(recipient, amount)  that return

true  must only modify the balance entries of the msg.sender  and the recipient  addresses. Specification:

[](willSucceed(contract.transfer(to, value), p1 != msg.sender && p1 != to) ==>

  <>(finished(contract.transfer(to, value), return == true ==> (_totalSupply ==

        old(_totalSupply) && _allowances == old(_allowances) && _balances[p1] ==

        old(_balances[p1]) && other_state_variables ==

        old(other_state_variables)))))

erc20-transfer-exceed-balance

transfer  Fails if Requested Amount Exceeds Available Balance. Any transfer of an amount of tokens that exceeds the

balance of msg.sender  must fail. Specification:

[](started(contract.transfer(to, value), value > _balances[msg.sender] &&

    _balances[msg.sender] >= 0 && value <

    0x10000000000000000000000000000000000000000000000000000000000000000) ==>

  <>(reverted(contract.transfer) || finished(contract.transfer(to, value), return

      == false)))

erc20-transfer-recipient-overflow
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transfer  Prevents Overflows in the Recipient's Balance. Any invocation of transfer(recipient, amount)  must fail if it

causes the balance of the recipient  address to overflow. Specification:

[](started(contract.transfer(to, value), to != msg.sender && _balances[to] + value

    >= 0x10000000000000000000000000000000000000000000000000000000000000000 &&

    _balances[to] >= 0 && _balances[to] <

    0x10000000000000000000000000000000000000000000000000000000000000000 &&

    _balances[msg.sender] <

    0x10000000000000000000000000000000000000000000000000000000000000000 && value >

    0 && value <= _balances[msg.sender]) ==> <>(reverted(contract.transfer) ||

    finished(contract.transfer(to, value), return == false) ||

    finished(contract.transfer(to, value), _balances[to] > old(_balances[to]) +

      value -

      0x10000000000000000000000000000000000000000000000000000000000000000)))

erc20-transfer-false

If transfer  Returns false , the Contract State Is Not Changed. If the transfer  function in contract contract  fails by

returning false , it must undo all state changes it incurred before returning to the caller. Specification:

[](willSucceed(contract.transfer(to, value)) ==> <>(finished(contract.transfer(to,

        value), return == false ==> (_balances == old(_balances) && _totalSupply ==

        old(_totalSupply) && _allowances == old(_allowances) &&

        other_state_variables == old(other_state_variables)))))

erc20-transfer-never-return-false

transfer  Never Returns false . The transfer function must never return false  to signal a failure. Specification:

[](!(finished(contract.transfer, return == false)))

Properties related to function transferFrom

erc20-transferfrom-revert-from-zero

transferFrom  Fails for Transfers From the Zero Address. All calls of the form transferFrom(from, dest, amount)  where

the from  address is zero, must fail. Specification:

[](started(contract.transferFrom(from, to, value), from == address(0)) ==>

  <>(reverted(contract.transferFrom) || finished(contract.transferFrom, return ==

      false)))

erc20-transferfrom-revert-to-zero

transferFrom  Fails for Transfers To the Zero Address. All calls of the form transferFrom(from, dest, amount)  where

the dest  address is zero, must fail. Specification:
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[](started(contract.transferFrom(from, to, value), to == address(0)) ==>

  <>(reverted(contract.transferFrom) || finished(contract.transferFrom, return ==

      false)))

erc20-transferfrom-succeed-normal

transferFrom  Succeeds on Admissible Non-self Transfers. All invocations of transferFrom(from, dest, amount)  must

succeed and return true  if

the value of amount  does not exceed the balance of address from ,

the value of amount  does not exceed the allowance of msg.sender  for address from ,

transferring a value of amount  to the address in dest  does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call. Specification:

[](started(contract.transferFrom(from, to, value), from != address(0) && to !=

    address(0) && from != to && value <= _balances[from] && value <=

    _allowances[from][msg.sender] && _balances[to] + value <

    0x10000000000000000000000000000000000000000000000000000000000000000 && value >=

    0 && _balances[to] >= 0 && _balances[from] >= 0 && _balances[from] <

    0x10000000000000000000000000000000000000000000000000000000000000000 &&

    _allowances[from][msg.sender] >= 0 && _allowances[from][msg.sender] <

    0x10000000000000000000000000000000000000000000000000000000000000000) ==>

  <>(finished(contract.transferFrom(from, to, value), return == true)))

erc20-transferfrom-succeed-self

transferFrom  Succeeds on Admissible Self Transfers. All invocations of transferFrom(from, dest, amount)  where the

dest  address equals the from  address (i.e. self-transfers) must succeed and return true  if:

The value of amount  does not exceed the balance of address from ,

the value of amount  does not exceed the allowance of msg.sender  for address from , and

the supplied gas suffices to complete the call. Specification:

[](started(contract.transferFrom(from, to, value), from != address(0) && from == to

    && value <= _balances[from] && value <= _allowances[from][msg.sender] && value

    >= 0 && _balances[from] <

    0x10000000000000000000000000000000000000000000000000000000000000000 &&

    _allowances[from][msg.sender] <

    0x10000000000000000000000000000000000000000000000000000000000000000) ==>

  <>(finished(contract.transferFrom(from, to, value), return == true)))

erc20-transferfrom-correct-amount
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transferFrom  Transfers the Correct Amount in Non-self Transfers. All invocations of transferFrom(from, dest,

amount)  that succeed and that return true  subtract the value in amount  from the balance of address from  and add the

same value to the balance of address dest . Specification:

[](willSucceed(contract.transferFrom(from, to, value), from != to && value >= 0 &&

    _balances[from] >= 0 && _balances[from] <

    0x10000000000000000000000000000000000000000000000000000000000000000 &&

    _balances[to] >= 0 && _balances[to] + value <

    0x10000000000000000000000000000000000000000000000000000000000000000) ==>

  <>(finished(contract.transferFrom(from, to, value), return == true ==>

      _balances[from] == old(_balances[from]) - value && _balances[to] ==

      old(_balances[to] + value))))

erc20-transferfrom-correct-amount-self

transferFrom  Performs Self Transfers Correctly. All non-reverting invocations of transferFrom(from, dest, amount)

that return true  and where the address in from  equals the address in dest  (i.e. self-transfers) do not change the

balance entry of the from  address (which equals dest ). Specification:

[](willSucceed(contract.transferFrom(from, to, value), from == to && value >= 0 &&

    value < 0x10000000000000000000000000000000000000000000000000000000000000000 &&

    _balances[from] >= 0 && _balances[from] <

    0x10000000000000000000000000000000000000000000000000000000000000000) ==>

  <>(finished(contract.transferFrom(from, to, value), return == true ==>

      _balances[from] == old(_balances[from]))))

erc20-transferfrom-correct-allowance

transferFrom  Updated the Allowance Correctly. All non-reverting invocations of transferFrom(from, dest, amount)

that return true  must decrease the allowance for address msg.sender  over address from  by the value in amount .

Specification:

[](willSucceed(contract.transferFrom(from, to, value), value >= 0 && value <

    0x10000000000000000000000000000000000000000000000000000000000000000 &&

    _balances[from] >= 0 && _balances[from] <

    0x10000000000000000000000000000000000000000000000000000000000000000 &&

    _balances[to] >= 0 && _balances[to] <

    0x10000000000000000000000000000000000000000000000000000000000000000 &&

    _allowances[from][msg.sender] >= 0 && _allowances[from][msg.sender] <

    0x10000000000000000000000000000000000000000000000000000000000000000) ==>

  <>(finished(contract.transferFrom(from, to, value), return == true ==>

      ((_allowances[from][msg.sender] == old(_allowances[from][msg.sender]) -

      value) || (_allowances[from][msg.sender] ==

      old(_allowances[from][msg.sender]) && (from == msg.sender ||

        old(_allowances[from][msg.sender]) ==

        0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))))))
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erc20-transferfrom-change-state

transferFrom  Has No Unexpected State Changes. All non-reverting invocations of transferFrom(from, dest, amount)

that return true  may only modify the following state variables:

The balance entry for the address in dest ,

The balance entry for the address in from ,

The allowance for the address in msg.sender  for the address in from . Specification:

[](willSucceed(contract.transferFrom(from, to, amount), p1 != from && p1 != to &&

    (p2 != from || p3 != msg.sender)) ==> <>(finished(contract.transferFrom(from,

      to, amount), return == true ==> (_totalSupply == old(_totalSupply) &&

      _balances[p1] == old(_balances[p1]) && _allowances[p2][p3] ==

      old(_allowances[p2][p3]) && other_state_variables ==

      old(other_state_variables)))))

erc20-transferfrom-fail-exceed-balance

transferFrom  Fails if the Requested Amount Exceeds the Available Balance. Any call of the form transferFrom(from,

dest, amount)  with a value for amount  that exceeds the balance of address from  must fail. Specification:

[](started(contract.transferFrom(from, to, value), value > _balances[from] &&

    _balances[from] >= 0 && _balances[from] <

    0x10000000000000000000000000000000000000000000000000000000000000000) ==>

  <>(reverted(contract.transferFrom) || finished(contract.transferFrom, return ==

      false)))

erc20-transferfrom-fail-exceed-allowance

transferFrom  Fails if the Requested Amount Exceeds the Available Allowance. Any call of the form transferFrom(from,

dest, amount)  with a value for amount  that exceeds the allowance of address msg.sender  must fail. Specification:

[](started(contract.transferFrom(from, to, value), msg.sender != from && value >

    _allowances[from][msg.sender] && _allowances[from][msg.sender] >= 0 && value <

    0x10000000000000000000000000000000000000000000000000000000000000000) ==>

  <>(reverted(contract.transferFrom) || finished(contract.transferFrom(from, to,

        value), return == false)))

erc20-transferfrom-fail-recipient-overflow

transferFrom  Prevents Overflows in the Recipient's Balance. Any call of transferFrom(from, dest, amount)  with a

value in amount  whose transfer would cause an overflow of the balance of address dest  must fail. Specification:
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[](started(contract.transferFrom(from, to, value), from != to && _balances[to] +

    value >= 0x10000000000000000000000000000000000000000000000000000000000000000 &&

    value < 0x10000000000000000000000000000000000000000000000000000000000000000 &&

    _balances[to] >= 0 && _balances[to] <

    0x10000000000000000000000000000000000000000000000000000000000000000) ==>

  <>(reverted(contract.transferFrom) || finished(contract.transferFrom(from, to,

        value), return == false) || finished(contract.transferFrom(from, to,

        value), _balances[to] > old(_balances[to]) + value -

      0x10000000000000000000000000000000000000000000000000000000000000000)))

erc20-transferfrom-false

If transferFrom  Returns false , the Contract's State Is Unchanged. If transferFrom  returns false  to signal a failure,

it must undo all incurred state changes before returning to the caller. Specification:

[](willSucceed(contract.transferFrom(from, to, value)) ==>

  <>(finished(contract.transferFrom(from, to, value), return == false ==>

    (_balances == old(_balances) && _totalSupply == old(_totalSupply) &&

    _allowances == old(_allowances) && other_state_variables ==

    old(other_state_variables)))))

erc20-transferfrom-never-return-false

transferFrom  Never Returns false . The transferFrom  function must never return false . Specification:

[](!(finished(contract.transferFrom, return == false)))

Properties related to function totalSupply

erc20-totalsupply-succeed-always

totalSupply  Always Succeeds. The function totalSupply  must always succeeds, assuming that its execution does not

run out of gas. Specification:

[](started(contract.totalSupply) ==> <>(finished(contract.totalSupply)))

erc20-totalsupply-correct-value

totalSupply  Returns the Value of the Corresponding State Variable. The totalSupply  function must return the value that

is held in the corresponding state variable of contract contract. Specification:

[](willSucceed(contract.totalSupply) ==> <>(finished(contract.totalSupply, return

      == _totalSupply)))

erc20-totalsupply-change-state
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totalSupply  Does Not Change the Contract's State. The totalSupply  function in contract contract must not change any

state variables. Specification:

[](willSucceed(contract.totalSupply) ==> <>(finished(contract.totalSupply,

      _totalSupply == old(_totalSupply) && _balances == old(_balances) &&

      _allowances == old(_allowances) && other_state_variables ==

      old(other_state_variables))))

Properties related to function balanceOf

erc20-balanceof-succeed-always

balanceOf  Always Succeeds. Function balanceOf  must always succeed if it does not run out of gas. Specification:

[](started(contract.balanceOf) ==> <>(finished(contract.balanceOf)))

erc20-balanceof-correct-value

balanceOf  Returns the Correct Value. Invocations of balanceOf(owner)  must return the value that is held in the contract's

balance mapping for address owner . Specification:

[](willSucceed(contract.balanceOf) ==> <>(finished(contract.balanceOf(owner),

      return == _balances[owner])))

erc20-balanceof-change-state

balanceOf  Does Not Change the Contract's State. Function balanceOf  must not change any of the contract's state

variables. Specification:

[](willSucceed(contract.balanceOf) ==> <>(finished(contract.balanceOf(owner),

      _totalSupply == old(_totalSupply) && _balances == old(_balances) &&

      _allowances == old(_allowances) && other_state_variables ==

      old(other_state_variables))))

Properties related to function allowance

erc20-allowance-succeed-always

allowance  Always Succeeds. Function allowance  must always succeed, assuming that its execution does not run out of

gas. Specification:

[](started(contract.allowance) ==> <>(finished(contract.allowance)))

erc20-allowance-correct-value
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allowance  Returns Correct Value. Invocations of allowance(owner, spender)  must return the allowance that address

spender  has over tokens held by address owner . Specification:

[](willSucceed(contract.allowance(owner, spender)) ==>

  <>(finished(contract.allowance(owner, spender), return ==

    _allowances[owner][spender])))

erc20-allowance-change-state

allowance  Does Not Change the Contract's State. Function allowance  must not change any of the contract's state

variables. Specification:

[](willSucceed(contract.allowance(owner, spender)) ==>

  <>(finished(contract.allowance(owner, spender), _totalSupply == old(_totalSupply)

    && _balances == old(_balances) && _allowances == old(_allowances) &&

    other_state_variables == old(other_state_variables))))

Properties related to function approve

erc20-approve-revert-zero

approve  Prevents Approvals For the Zero Address. All calls of the form approve(spender, amount)  must fail if the

address in spender  is the zero address. Specification:

[](started(contract.approve(spender, value), spender == address(0)) ==>

  <>(reverted(contract.approve) || finished(contract.approve(spender, value),

    return == false)))

erc20-approve-succeed-normal

approve  Succeeds for Admissible Inputs. All calls of the form approve(spender, amount)  must succeed, if

the address in spender  is not the zero address and

the execution does not run out of gas. Specification:

[](started(contract.approve(spender, value), spender != address(0)) ==>

  <>(finished(contract.approve(spender, value), return == true)))

erc20-approve-correct-amount

approve  Updates the Approval Mapping Correctly. All non-reverting calls of the form approve(spender, amount)  that

return true  must correctly update the allowance mapping according to the address msg.sender  and the values of

spender  and amount . Specification:
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[](willSucceed(contract.approve(spender, value), spender != address(0) && value >=

    0 && value <

    0x10000000000000000000000000000000000000000000000000000000000000000) ==>

  <>(finished(contract.approve(spender, value), return == true ==>

      _allowances[msg.sender][spender] == value)))

erc20-approve-change-state

approve  Has No Unexpected State Changes. All calls of the form approve(spender, amount)  must only update the

allowance mapping according to the address msg.sender  and the values of spender  and amount  and incur no other

state changes. Specification:

[](willSucceed(contract.approve(spender, value), spender != address(0) && (p1 !=

      msg.sender || p2 != spender)) ==> <>(finished(contract.approve(spender,

        value), return == true ==> _totalSupply == old(_totalSupply) && _balances

      == old(_balances) && _allowances[p1][p2] == old(_allowances[p1][p2]) &&

      other_state_variables == old(other_state_variables))))

erc20-approve-false

If approve  Returns false , the Contract's State Is Unchanged. If function approve  returns false  to signal a failure, it

must undo all state changes that it incurred before returning to the caller. Specification:

[](willSucceed(contract.approve(spender, value)) ==>

  <>(finished(contract.approve(spender, value), return == false ==> (_balances ==

      old(_balances) && _totalSupply == old(_totalSupply) && _allowances ==

      old(_allowances) && other_state_variables == old(other_state_variables)))))

erc20-approve-never-return-false

approve  Never Returns false . The function approve  must never returns false . Specification:

[](!(finished(contract.approve, return == false)))
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