
Security Assessment

Tomi
CertiK Verified on Mar 6th, 2023

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

0 Major
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

0 Medium
Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

4 Minor 4 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

4 Informational 4 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY TOMI

CertiK Verified on Mar 6th, 2023

Tomi

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

DeFi

ECOSYSTEM

Ethereum

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 03/06/2023

KEY COMPONENTS

N/A

CODEBASE
https://etherscan.io/address/0xe43e0a34a1da0dfc2727ed3d91fcef198b

d2d3bf

https://etherscan.io/address/0x4385328cc4d643ca98dfea734360c0f596

...View All

8
Total Findings

0
Resolved

0
Mitigated

0
Partially Resolved

8
Acknowledged

0
Declined

0
Unresolved

https://etherscan.io/address/0xe43e0a34a1da0dfc2727ed3d91fcef198bd2d3bf
https://etherscan.io/address/0x4385328cc4d643ca98dfea734360c0f596c83449

TABLE OF CONTENTS TOMI

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Decentralization Efforts

Description

Recommendations

Alleviations

Findings

COC-01 : Third Party Dependency

TOM-01 : Uninitialized State Variable

TOM-02 : Unprotected Initializer

TOM-03 : Missing Zero Address Validation

TOM-04 : Missing Emit Events

TOM-05 : Unused Event

TOM-06 : Too Many Digits

TOM-07 : Redundant Statements

Formal Verification

Considered Functions And Scope

Verification Results

Appendix

Disclaimer

TABLE OF CONTENTS TOMI

CODEBASE TOMI

Repository

https://etherscan.io/address/0xe43e0a34a1da0dfc2727ed3d91fcef198bd2d3bf

https://etherscan.io/address/0x4385328cc4d643ca98dfea734360c0f596c83449

CODEBASE TOMI

https://etherscan.io/address/0xe43e0a34a1da0dfc2727ed3d91fcef198bd2d3bf
https://etherscan.io/address/0x4385328cc4d643ca98dfea734360c0f596c83449

AUDIT SCOPE TOMI

4 files audited 2 files with Acknowledged findings 2 files without findings

ID File SHA256 Checksum

IPF contracts/IPriceFeed.sol
5f40b74801e9041a0756e588acf54b49117ab

22397c936c2eafac6daa53e25e1

TOM contracts/Tomi.sol
a0c675b36a7bce3e87b52e25c91e9fe789187

7572e801356f34f164bcc5f71cf

IMP contracts/import.sol
fbd2dbc1a472e4e58973c7554b906b2fb5012

114018ce69bf6f13a0de5b949fa

IPN contracts/IPioneerNFT.sol
f5028df35930b749a1e31c94b2ff7acf35604f6

dde854aba0a37a7cec2b87a1a

AUDIT SCOPE TOMI

APPROACH & METHODS TOMI

This report has been prepared for Tomi to discover issues and vulnerabilities in the source code of the Tomi project as well as

any contract dependencies that were not part of an officially recognized library. A comprehensive examination has been

performed, utilizing Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS TOMI

DECENTRALIZATION EFFORTS TOMI

Description

In the contract Tomi , the role owner has authority over the following functions:

updateMarketingWallet

updateCoreTeamWallet

updateFutureTeamWallet

updateEmissions

fundDao

transferOwnership

renounceOwnership

In the contract Tomi , the role nftContract has authority over the following functions:

mintThroughNft

In the contract Tomi , the role vestingContract has authority over the following functions:

mintThroughVesting

Any compromise to these accounts may allow a hacker to take advantage of these authorities.

Besides, the Tomi token is upgradeable, the owner can upgrade the contract logic without the community's commitment. If

an attacker compromises the account, he can change the implementation of the contract and drain tokens from the contract.

Recommendations

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

DECENTRALIZATION EFFORTS TOMI

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviations

[Tomi]: Issue acknowledged.

DECENTRALIZATION EFFORTS TOMI

FINDINGS TOMI

This report has been prepared to discover issues and vulnerabilities for Tomi. Through this audit, we have uncovered 8

issues ranging from different severity levels. Utilizing the techniques of Static Analysis & Manual Review to complement

rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

COC-01 Third Party Dependency Volatile Code Minor Acknowledged

TOM-01 Uninitialized State Variable Coding Style Minor Acknowledged

TOM-02 Unprotected Initializer Coding Style Minor Acknowledged

TOM-03 Missing Zero Address Validation Volatile Code Minor Acknowledged

TOM-04 Missing Emit Events Coding Style Informational Acknowledged

TOM-05 Unused Event Coding Style Informational Acknowledged

TOM-06 Too Many Digits Coding Style Informational Acknowledged

TOM-07 Redundant Statements Volatile Code Informational Acknowledged

FINDINGS TOMI

8
Total Findings

0
Critical

0
Major

0
Medium

4
Minor

4
Informational

COC-01 THIRD PARTY DEPENDENCY

Category Severity Location Status

Volatile

Code
Minor

contracts/IPriceFeed.sol (Implementation): 3; contracts/Tomi.sol (I

mplementation): 36, 37, 143
Acknowledged

Description

The contract is serving as the underlying entity to interact with one or more third party protocols. The scope of the audit treats

third party entities as black boxes and assume their functional correctness. However, in the real world, third parties can be

compromised and this may lead to lost or stolen assets. In addition, upgrades of third parties can possibly create severe

impacts, such as increasing fees of third parties, migrating to new LP pools, etc.

36 IPioneerNFT public nftContract;

The contract Tomi interacts with third party contract with IPioneerNFT interface via nftContract .

37 address public vestingContract;

The contract Tomi interacts with third party contract with vestingContract interface via vestingContract .

143 uint256 tomiPrice =

IPriceFeed(0x4c7f63B6105Ff95963fC79dB8111628fa014769b).getTomiPrice(); // Price

Oracle

This expression interacts with a third party contract with IPriceFeed interface.

Recommendation

We understand that the business logic requires interaction with the third parties. We encourage the team to constantly

monitor the statuses of third parties to mitigate the side effects when unexpected activities are observed.

Alleviation

[Tomi]: These third-party contracts are owned and deployed by us. We monitor them on daily basis and their interacting

functions are strictly conditioned and monitored.

COC-01 TOMI

TOM-01 UNINITIALIZED STATE VARIABLE

Category Severity Location Status

Coding Style Minor contracts/Tomi.sol (Implementation): 36, 37 Acknowledged

Description

One or more state variables are used without being initialized. Also, there is no function to set them.

36 IPioneerNFT public nftContract;

nftContract is never initialized, but used in Tomi.mintThroughNft .

37 address public vestingContract;

vestingContract is never initialized, but used in:

Recommendation

We recommend initializing the state variables at declaration or in the initializer , or adding a setter function. If a variable

is meant to be initialized to zero, explicitly set it to zero to improve code readability.

Alleviation

[Tomi]: Some of the state variables are left uninitialized as to keep the upgradeability standard intact. These variables need

to be set only once and there was a setter function in the previous implementation and it has been upgraded and removed to

avoid security risks.

TOM-01 TOMI

TOM-02 UNPROTECTED INITIALIZER

Category Severity Location Status

Coding Style Minor contracts/Tomi.sol (Implementation): 80 Acknowledged

Description

One or more logic contracts do not protect their initializers. An attacker can call the initializer and assume ownership of the

logic contract, whereby she can perform privileged operations that trick unsuspecting users into believing that she is the

owner of the upgradeable contract.

11 contract Tomi is Initializable, ERC20Upgradeable, OwnableUpgradeable {

Tomi is an upgradeable contract that does not protect its initializer.

80 function initialize() initializer public {

initialize is an unprotected initializer function.

Recommendation

We advise calling _disableInitializers in the constructor or giving the constructor the initializer modifier to prevent

the intializer from being called on the logic contract.

Reference: https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-

upgradeable#initializing_the_implementation_contract

Alleviation

[Tomi]: We will add and protect the initialize function at the implementation contract on next upgrade surely.

TOM-02 TOMI

https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#initializing_the_implementation_contract

TOM-03 MISSING ZERO ADDRESS VALIDATION

Category Severity Location Status

Volatile Code Minor contracts/Tomi.sol (Implementation): 87, 92, 97 Acknowledged

Description

Addresses should be checked before assignment or external call to make sure they are not zero addresses.

87 marketingWallet = newAddress;

newAddress is not zero-checked before being used.

92 coreTeamWallet = newAddress;

newAddress is not zero-checked before being used.

97 futureTeamWallet = newAddress;

newAddress is not zero-checked before being used.

Recommendation

We advise adding a zero-check for the passed-in address value to prevent unexpected errors.

Alleviation

[Tomi]: These addresses change function can only be called by DAO on 2 weeks of voting period and thoroughly checked,

but we will still add a zero address validation check on next upgrade.

TOM-03 TOMI

TOM-04 MISSING EMIT EVENTS

Category Severity Location Status

Coding Style Informational contracts/Tomi.sol (Implementation): 116, 125, 141 Acknowledged

Description

There should always be events emitted in the sensitive functions that are controlled by centralization roles.

Recommendation

It is recommended emitting events for the sensitive functions that are controlled by centralization roles.

Alleviation

[Tomi]: These Lines of code are calling the _mint function which has a mint event emitted in it by default. But we'll for sure

add a custom event relating to the function call and emit it on next upgrade.

TOM-04 TOMI

TOM-05 UNUSED EVENT

Category Severity Location Status

Coding Style Informational contracts/Tomi.sol (Implementation): 73~78 Acknowledged

Description

73 event daoFunded(

74 uint256 timestamp,

75 uint256 tomiAmount,

76 uint256 tomiPrice,

77 address treasury

78);

daoFunded is declared in Tomi but never emitted.

Recommendation

We advise emitting it in the function fundDao() .

Alleviation

[Tomi]: This event will be used in fundDao function and will be emitted accordingly in next upgrade.

TOM-05 TOMI

TOM-06 TOO MANY DIGITS

Category Severity Location Status

Coding Style Informational contracts/Tomi.sol (Implementation): 144 Acknowledged

Description

Literals with many digits are difficult to read and review.

144 uint256 tomiAmount =

uint256(1000000000000000000000000000000000).div(tomiPrice); // 10 Million =>

10_000_000^26

Recommendation

We advise the client to ensure the correctness of the number and use the scientific notation to improve readability.

Alleviation

[Tomi]: The number will be converted to scientific notation in the future upgrade.

TOM-06 TOMI

TOM-07 REDUNDANT STATEMENTS

Category Severity Location Status

Volatile Code Informational contracts/Tomi.sol (Implementation): 39 Acknowledged

Description

State variables that never used can be removed to save gas.

39 uint256 public totalMined;

Recommendation

We recommend removing the unused state variables that never used.

Alleviation

[Tomi]: These variables were put for future use which is yet to be finalized in current roadmap. We didn't risked removed

the storage variables for preserving the upgradeability nature. These will be handled on further clarification of protocol

roadmap.

TOM-07 TOMI

FORMAL VERIFICATION TOMI

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied automated formal

verification (symbolic model checking) to prove that well-known functions in the smart contracts adhere to their expected

behavior.

Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.

Verification of ERC-20 Compliance

We verified properties of the public interface of those token contracts that implement the ERC-20 interface. This covers

Functions transfer and transferFrom that are widely used for token transfers,

functions approve and allowance that enable the owner of an account to delegate a certain subset of her tokens

to another account (i.e. to grant an allowance), and

the functions balanceOf and totalSupply , which are verified to correctly reflect the internal state of the contract.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

erc20-transfer-revert-zero transfer Prevents Transfers to the Zero Address

erc20-transfer-correct-amount transfer Transfers the Correct Amount in Non-self Transfers

erc20-transfer-correct-amount-self transfer Transfers the Correct Amount in Self Transfers

erc20-transfer-succeed-normal transfer Succeeds on Admissible Non-self Transfers

erc20-transfer-succeed-self transfer Succeeds on Admissible Self Transfers

erc20-transfer-exceed-balance transfer Fails if Requested Amount Exceeds Available Balance

erc20-transfer-change-state transfer Has No Unexpected State Changes

erc20-transfer-false If transfer Returns false , the Contract State Is Not Changed

erc20-transfer-recipient-overflow transfer Prevents Overflows in the Recipient's Balance

erc20-transfer-never-return-false transfer Never Returns false

FORMAL VERIFICATION TOMI

Property Name Title

erc20-transferfrom-revert-from-zero transferFrom Fails for Transfers From the Zero Address

erc20-transferfrom-revert-to-zero transferFrom Fails for Transfers To the Zero Address

erc20-transferfrom-correct-amount-self transferFrom Performs Self Transfers Correctly

erc20-transferfrom-correct-amount transferFrom Transfers the Correct Amount in Non-self Transfers

erc20-transferfrom-succeed-normal transferFrom Succeeds on Admissible Non-self Transfers

erc20-transferfrom-succeed-self transferFrom Succeeds on Admissible Self Transfers

erc20-transferfrom-fail-exceed-balance
transferFrom Fails if the Requested Amount Exceeds the Available

Balance

erc20-transferfrom-correct-allowance transferFrom Updated the Allowance Correctly

erc20-transferfrom-change-state transferFrom Has No Unexpected State Changes

erc20-transferfrom-fail-exceed-allowance
transferFrom Fails if the Requested Amount Exceeds the Available

Allowance

erc20-transferfrom-false If transferFrom Returns false , the Contract's State Is Unchanged

erc20-transferfrom-fail-recipient-overflow transferFrom Prevents Overflows in the Recipient's Balance

erc20-totalsupply-succeed-always totalSupply Always Succeeds

erc20-transferfrom-never-return-false transferFrom Never Returns false

erc20-totalsupply-correct-value totalSupply Returns the Value of the Corresponding State Variable

erc20-totalsupply-change-state totalSupply Does Not Change the Contract's State

erc20-balanceof-succeed-always balanceOf Always Succeeds

erc20-balanceof-correct-value balanceOf Returns the Correct Value

erc20-balanceof-change-state balanceOf Does Not Change the Contract's State

erc20-allowance-succeed-always allowance Always Succeeds

erc20-allowance-correct-value allowance Returns Correct Value

erc20-allowance-change-state allowance Does Not Change the Contract's State

FORMAL VERIFICATION TOMI

Property Name Title

erc20-approve-revert-zero approve Prevents Approvals For the Zero Address

erc20-approve-succeed-normal approve Succeeds for Admissible Inputs

erc20-approve-correct-amount approve Updates the Approval Mapping Correctly

erc20-approve-change-state approve Has No Unexpected State Changes

erc20-approve-false If approve Returns false , the Contract's State Is Unchanged

erc20-approve-never-return-false approve Never Returns false

Verification Results

In the remainder of this section, we list all contracts where model checking of at least one property was not successful. There

are several reasons why this could happen:

Model checking reports a counterexample that violates the property. Depending on the counterexample,this occurs if

The specification of the property is too generic and does not accurately capture the intended behavior of

the smart contract. In that case, the counterexample does not indicate a problem in the underlying smart

contract. We report such instances as being "inapplicable".

The property is applicable to the smart contract. In that case, the counterexample showcases a problem

in the smart contract and a correspond finding is reported separately in the Findings section of this

report. In the following tables, we report such instances as "invalid". The distinction between spurious

and actual counterexamples is done manually by the auditors.

The model checking result is inconclusive. Such a result does not indicate a problem in the underlying smart

contract. An inconclusive result may occur if

The model checking engine fails to construct a proof. This can happen if the logical deductions

necessary are beyond the capabilities of the automated reasoning tool. It is a technical limitation of all

proof engines and cannot be avoided in general.

The model checking engine runs out of time or memory and did not produce a result. This can happen if

automatic abstraction techniques are ineffective or of the state space is too big.

Detailed Results For Contract Tomi (contracts/Tomi.sol)

FORMAL VERIFICATION TOMI

Verification of ERC-20 Compliance

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero True

erc20-transfer-correct-amount True

erc20-transfer-correct-amount-self True

erc20-transfer-succeed-normal Inapplicable
The specification does not reflect the contract's

intended behavior.

erc20-transfer-succeed-self Inapplicable
The specification does not reflect the contract's

intended behavior.

erc20-transfer-exceed-balance True

erc20-transfer-change-state True

erc20-transfer-false True

erc20-transfer-recipient-overflow True

erc20-transfer-never-return-false True

FORMAL VERIFICATION TOMI

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-from-zero True

erc20-transferfrom-revert-to-zero True

erc20-transferfrom-correct-amount-self True

erc20-transferfrom-correct-amount True

erc20-transferfrom-succeed-normal Inapplicable
The specification does not reflect the contract's

intended behavior.

erc20-transferfrom-succeed-self Inapplicable
The specification does not reflect the contract's

intended behavior.

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-change-state True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-false True

erc20-transferfrom-fail-recipient-overflow True

erc20-transferfrom-never-return-false True

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION TOMI

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

FORMAL VERIFICATION TOMI

APPENDIX TOMI

Finding Categories

Categories Description

Volatile

Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that

may result in a vulnerability.

Coding

Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

Details on Formal Verification

Some Solidity smart contracts from this project have been formally verified using symbolic model checking. Each such

contract was compiled into a mathematical model which reflects all its possible behaviors with respect to the property. The

model takes into account the semantics of the Solidity instructions found in the contract. All verification results that we report

are based on that model.

Technical Description

The model also formalizes a simplified execution environment of the Ethereum blockchain and a verification harness that

performs the initialization of the contract and all possible interactions with the contract. Initially, the contract state is initialized

non-deterministically (i.e. by arbitrary values) and over-approximates the reachable state space of the contract throughout

any actual deployment on chain. All valid results thus carry over to the contract's behavior in arbitrary states after it has been

deployed.

Assumptions and Simplifications

The following assumptions and simplifications apply to our model:

Gas consumption is not taken into account, i.e. we assume that executions do not terminate prematurely because

they run out of gas.

The contract's state variables are non-deterministically initialized before invocation of any function. That ignores

contract invariants and may lead to false positives. It is, however, a safe over-approximation.

APPENDIX TOMI

The verification engine reasons about unbounded integers. Machine arithmetic is modeled using modular arithmetic

based on the bit-width of the underlying numeric Solidity type. This ensures that over- and underflow characteristics

are faithfully represented.

Certain low-level calls and inline assembly are not supported and may lead to a contract not being formally verified.

We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled

contract.

Formalism for Property Specification

All properties are expressed in linear temporal logic (LTL). For that matter, we treat each invocation of and each return from a

public or an external function as a discrete time step. Our analysis reasons about the contract's state upon entering and upon

leaving public or external functions.

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written <>), we use

the following predicates as atomic propositions. They are evaluated on the contract's state whenever a discrete time step

occurs:

started(f, [cond]) Indicates an invocation of contract function f within a state satisfying formula cond .

willSucceed(f, [cond]) Indicates an invocation of contract function f within a state satisfying formula cond

and considers only those executions that do not revert.

finished(f, [cond]) Indicates that execution returns from contract function f in a state satisfying formula

cond . Here, formula cond may refer to the contract's state variables and to the value they had upon entering the

function (using the old function).

reverted(f, [cond]) Indicates that execution of contract function f was interrupted by an exception in a

contract state satisfying formula cond .

The verification performed in this audit operates on a harness that non-deterministically invokes a function of the contract's

public or external interface. All formulas are analyzed w.r.t. the trace that corresponds to this function invocation.

Description of the Analyzed ERC-20 Properties

The specifications are designed such that they capture the desired and admissible behaviors of the ERC-20 functions

transfer , transferFrom , approve , allowance , balanceOf , and totalSupply . In the following, we list those

property specifications.

Properties related to function transfer

erc20-transfer-revert-zero

transfer Prevents Transfers to the Zero Address. Any call of the form transfer(recipient, amount) must fail if the

recipient address is the zero address. Specification:

[](started(contract.transfer(to, value), to == address(0)) ==>

 <>(reverted(contract.transfer) || finished(contract.transfer(to, value), return

 == false)))

APPENDIX TOMI

erc20-transfer-succeed-normal

transfer Succeeds on Admissible Non-self Transfers. All invocations of the form transfer(recipient, amount) must

succeed and return true if

the recipient address is not the zero address,

amount does not exceed the balance of address msg.sender ,

transferring amount to the recipient address does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call. Specification:

[](started(contract.transfer(to, value), to != address(0) && to != msg.sender &&

 value >= 0 && value <= _balances[msg.sender] && _balances[to] + value <

 0x100 &&

 _balances[to] >= 0 && _balances[msg.sender] <

 0x100) ==>

 <>(finished(contract.transfer(to, value), return == true)))

erc20-transfer-succeed-self

transfer Succeeds on Admissible Self Transfers. All self-transfers, i.e. invocations of the form transfer(recipient,

amount) where the recipient address equals the address in msg.sender must succeed and return true if

the value in amount does not exceed the balance of msg.sender and

the supplied gas suffices to complete the call. Specification:

[](started(contract.transfer(to, value), to != address(0) && to == msg.sender &&

 value >= 0 && value <= _balances[msg.sender] && _balances[msg.sender] >= 0 &&

 _balances[msg.sender] <

 0x100) ==>

 <>(finished(contract.transfer(to, value), return == true)))

erc20-transfer-correct-amount

transfer Transfers the Correct Amount in Non-self Transfers. All non-reverting invocations of transfer(recipient,

amount) that return true must subtract the value in amount from the balance of msg.sender and add the same value to

the balance of the recipient address. Specification:

APPENDIX TOMI

[](willSucceed(contract.transfer(to, value), to != msg.sender && _balances[to] >= 0

 && value >= 0 && _balances[to] + value <

 0x100 &&

 _balances[msg.sender] >= 0 && _balances[msg.sender] <

 0x100) ==>

 <>(finished(contract.transfer(to, value), return == true ==>

 _balances[msg.sender] == old(_balances[msg.sender]) - value && _balances[to]

 == old(_balances[to]) + value)))

erc20-transfer-correct-amount-self

transfer Transfers the Correct Amount in Self Transfers. All non-reverting invocations of transfer(recipient, amount)

that return true and where the recipient address equals msg.sender (i.e. self-transfers) must not change the balance

of address msg.sender . Specification:

[](willSucceed(contract.transfer(to, value), to == msg.sender && _balances[to] >= 0

 && _balances[to] <

 0x100) ==>

 <>(finished(contract.transfer(to, value), return == true ==> _balances[to] ==

 old(_balances[to]))))

erc20-transfer-change-state

transfer Has No Unexpected State Changes. All non-reverting invocations of transfer(recipient, amount) that return

true must only modify the balance entries of the msg.sender and the recipient addresses. Specification:

[](willSucceed(contract.transfer(to, value), p1 != msg.sender && p1 != to) ==>

 <>(finished(contract.transfer(to, value), return == true ==> (_totalSupply ==

 old(_totalSupply) && _allowances == old(_allowances) && _balances[p1] ==

 old(_balances[p1]) && other_state_variables ==

 old(other_state_variables)))))

erc20-transfer-exceed-balance

transfer Fails if Requested Amount Exceeds Available Balance. Any transfer of an amount of tokens that exceeds the

balance of msg.sender must fail. Specification:

[](started(contract.transfer(to, value), value > _balances[msg.sender] &&

 _balances[msg.sender] >= 0 && value <

 0x100) ==>

 <>(reverted(contract.transfer) || finished(contract.transfer(to, value), return

 == false)))

erc20-transfer-recipient-overflow

APPENDIX TOMI

transfer Prevents Overflows in the Recipient's Balance. Any invocation of transfer(recipient, amount) must fail if it

causes the balance of the recipient address to overflow. Specification:

[](started(contract.transfer(to, value), to != msg.sender && _balances[to] + value

 >= 0x100 &&

 _balances[to] >= 0 && _balances[to] <

 0x100 &&

 _balances[msg.sender] <

 0x100 && value >

 0 && value <= _balances[msg.sender]) ==> <>(reverted(contract.transfer) ||

 finished(contract.transfer(to, value), return == false) ||

 finished(contract.transfer(to, value), _balances[to] > old(_balances[to]) +

 value -

 0x100)))

erc20-transfer-false

If transfer Returns false , the Contract State Is Not Changed. If the transfer function in contract contract fails by

returning false , it must undo all state changes it incurred before returning to the caller. Specification:

[](willSucceed(contract.transfer(to, value)) ==> <>(finished(contract.transfer(to,

 value), return == false ==> (_balances == old(_balances) && _totalSupply ==

 old(_totalSupply) && _allowances == old(_allowances) &&

 other_state_variables == old(other_state_variables)))))

erc20-transfer-never-return-false

transfer Never Returns false . The transfer function must never return false to signal a failure. Specification:

[](!(finished(contract.transfer, return == false)))

Properties related to function transferFrom

erc20-transferfrom-revert-from-zero

transferFrom Fails for Transfers From the Zero Address. All calls of the form transferFrom(from, dest, amount) where

the from address is zero, must fail. Specification:

[](started(contract.transferFrom(from, to, value), from == address(0)) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom, return ==

 false)))

erc20-transferfrom-revert-to-zero

transferFrom Fails for Transfers To the Zero Address. All calls of the form transferFrom(from, dest, amount) where

the dest address is zero, must fail. Specification:

APPENDIX TOMI

[](started(contract.transferFrom(from, to, value), to == address(0)) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom, return ==

 false)))

erc20-transferfrom-succeed-normal

transferFrom Succeeds on Admissible Non-self Transfers. All invocations of transferFrom(from, dest, amount) must

succeed and return true if

the value of amount does not exceed the balance of address from ,

the value of amount does not exceed the allowance of msg.sender for address from ,

transferring a value of amount to the address in dest does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call. Specification:

[](started(contract.transferFrom(from, to, value), from != address(0) && to !=

 address(0) && from != to && value <= _balances[from] && value <=

 _allowances[from][msg.sender] && _balances[to] + value <

 0x100 && value >=

 0 && _balances[to] >= 0 && _balances[from] >= 0 && _balances[from] <

 0x100 &&

 _allowances[from][msg.sender] >= 0 && _allowances[from][msg.sender] <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true)))

erc20-transferfrom-succeed-self

transferFrom Succeeds on Admissible Self Transfers. All invocations of transferFrom(from, dest, amount) where the

dest address equals the from address (i.e. self-transfers) must succeed and return true if:

The value of amount does not exceed the balance of address from ,

the value of amount does not exceed the allowance of msg.sender for address from , and

the supplied gas suffices to complete the call. Specification:

[](started(contract.transferFrom(from, to, value), from != address(0) && from == to

 && value <= _balances[from] && value <= _allowances[from][msg.sender] && value

 >= 0 && _balances[from] <

 0x100 &&

 _allowances[from][msg.sender] <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true)))

erc20-transferfrom-correct-amount

APPENDIX TOMI

transferFrom Transfers the Correct Amount in Non-self Transfers. All invocations of transferFrom(from, dest,

amount) that succeed and that return true subtract the value in amount from the balance of address from and add the

same value to the balance of address dest . Specification:

[](willSucceed(contract.transferFrom(from, to, value), from != to && value >= 0 &&

 _balances[from] >= 0 && _balances[from] <

 0x100 &&

 _balances[to] >= 0 && _balances[to] + value <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true ==>

 _balances[from] == old(_balances[from]) - value && _balances[to] ==

 old(_balances[to] + value))))

erc20-transferfrom-correct-amount-self

transferFrom Performs Self Transfers Correctly. All non-reverting invocations of transferFrom(from, dest, amount)

that return true and where the address in from equals the address in dest (i.e. self-transfers) do not change the

balance entry of the from address (which equals dest). Specification:

[](willSucceed(contract.transferFrom(from, to, value), from == to && value >= 0 &&

 value < 0x100 &&

 _balances[from] >= 0 && _balances[from] <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true ==>

 _balances[from] == old(_balances[from]))))

erc20-transferfrom-correct-allowance

transferFrom Updated the Allowance Correctly. All non-reverting invocations of transferFrom(from, dest, amount)

that return true must decrease the allowance for address msg.sender over address from by the value in amount .

Specification:

[](willSucceed(contract.transferFrom(from, to, value), value >= 0 && value <

 0x100 &&

 _balances[from] >= 0 && _balances[from] <

 0x100 &&

 _balances[to] >= 0 && _balances[to] <

 0x100 &&

 _allowances[from][msg.sender] >= 0 && _allowances[from][msg.sender] <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true ==>

 ((_allowances[from][msg.sender] == old(_allowances[from][msg.sender]) -

 value) || (_allowances[from][msg.sender] ==

 old(_allowances[from][msg.sender]) && (from == msg.sender ||

 old(_allowances[from][msg.sender]) ==

 0xFF))))))

APPENDIX TOMI

erc20-transferfrom-change-state

transferFrom Has No Unexpected State Changes. All non-reverting invocations of transferFrom(from, dest, amount)

that return true may only modify the following state variables:

The balance entry for the address in dest ,

The balance entry for the address in from ,

The allowance for the address in msg.sender for the address in from . Specification:

[](willSucceed(contract.transferFrom(from, to, amount), p1 != from && p1 != to &&

 (p2 != from || p3 != msg.sender)) ==> <>(finished(contract.transferFrom(from,

 to, amount), return == true ==> (_totalSupply == old(_totalSupply) &&

 _balances[p1] == old(_balances[p1]) && _allowances[p2][p3] ==

 old(_allowances[p2][p3]) && other_state_variables ==

 old(other_state_variables)))))

erc20-transferfrom-fail-exceed-balance

transferFrom Fails if the Requested Amount Exceeds the Available Balance. Any call of the form transferFrom(from,

dest, amount) with a value for amount that exceeds the balance of address from must fail. Specification:

[](started(contract.transferFrom(from, to, value), value > _balances[from] &&

 _balances[from] >= 0 && _balances[from] <

 0x100) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom, return ==

 false)))

erc20-transferfrom-fail-exceed-allowance

transferFrom Fails if the Requested Amount Exceeds the Available Allowance. Any call of the form transferFrom(from,

dest, amount) with a value for amount that exceeds the allowance of address msg.sender must fail. Specification:

[](started(contract.transferFrom(from, to, value), msg.sender != from && value >

 _allowances[from][msg.sender] && _allowances[from][msg.sender] >= 0 && value <

 0x100) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom(from, to,

 value), return == false)))

erc20-transferfrom-fail-recipient-overflow

transferFrom Prevents Overflows in the Recipient's Balance. Any call of transferFrom(from, dest, amount) with a

value in amount whose transfer would cause an overflow of the balance of address dest must fail. Specification:

APPENDIX TOMI

[](started(contract.transferFrom(from, to, value), from != to && _balances[to] +

 value >= 0x100 &&

 value < 0x100 &&

 _balances[to] >= 0 && _balances[to] <

 0x100) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom(from, to,

 value), return == false) || finished(contract.transferFrom(from, to,

 value), _balances[to] > old(_balances[to]) + value -

 0x100)))

erc20-transferfrom-false

If transferFrom Returns false , the Contract's State Is Unchanged. If transferFrom returns false to signal a failure,

it must undo all incurred state changes before returning to the caller. Specification:

[](willSucceed(contract.transferFrom(from, to, value)) ==>

 <>(finished(contract.transferFrom(from, to, value), return == false ==>

 (_balances == old(_balances) && _totalSupply == old(_totalSupply) &&

 _allowances == old(_allowances) && other_state_variables ==

 old(other_state_variables)))))

erc20-transferfrom-never-return-false

transferFrom Never Returns false . The transferFrom function must never return false . Specification:

[](!(finished(contract.transferFrom, return == false)))

Properties related to function totalSupply

erc20-totalsupply-succeed-always

totalSupply Always Succeeds. The function totalSupply must always succeeds, assuming that its execution does not

run out of gas. Specification:

[](started(contract.totalSupply) ==> <>(finished(contract.totalSupply)))

erc20-totalsupply-correct-value

totalSupply Returns the Value of the Corresponding State Variable. The totalSupply function must return the value that

is held in the corresponding state variable of contract contract. Specification:

[](willSucceed(contract.totalSupply) ==> <>(finished(contract.totalSupply, return

 == _totalSupply)))

erc20-totalsupply-change-state

APPENDIX TOMI

totalSupply Does Not Change the Contract's State. The totalSupply function in contract contract must not change any

state variables. Specification:

[](willSucceed(contract.totalSupply) ==> <>(finished(contract.totalSupply,

 _totalSupply == old(_totalSupply) && _balances == old(_balances) &&

 _allowances == old(_allowances) && other_state_variables ==

 old(other_state_variables))))

Properties related to function balanceOf

erc20-balanceof-succeed-always

balanceOf Always Succeeds. Function balanceOf must always succeed if it does not run out of gas. Specification:

[](started(contract.balanceOf) ==> <>(finished(contract.balanceOf)))

erc20-balanceof-correct-value

balanceOf Returns the Correct Value. Invocations of balanceOf(owner) must return the value that is held in the contract's

balance mapping for address owner . Specification:

[](willSucceed(contract.balanceOf) ==> <>(finished(contract.balanceOf(owner),

 return == _balances[owner])))

erc20-balanceof-change-state

balanceOf Does Not Change the Contract's State. Function balanceOf must not change any of the contract's state

variables. Specification:

[](willSucceed(contract.balanceOf) ==> <>(finished(contract.balanceOf(owner),

 _totalSupply == old(_totalSupply) && _balances == old(_balances) &&

 _allowances == old(_allowances) && other_state_variables ==

 old(other_state_variables))))

Properties related to function allowance

erc20-allowance-succeed-always

allowance Always Succeeds. Function allowance must always succeed, assuming that its execution does not run out of

gas. Specification:

[](started(contract.allowance) ==> <>(finished(contract.allowance)))

erc20-allowance-correct-value

APPENDIX TOMI

allowance Returns Correct Value. Invocations of allowance(owner, spender) must return the allowance that address

spender has over tokens held by address owner . Specification:

[](willSucceed(contract.allowance(owner, spender)) ==>

 <>(finished(contract.allowance(owner, spender), return ==

 _allowances[owner][spender])))

erc20-allowance-change-state

allowance Does Not Change the Contract's State. Function allowance must not change any of the contract's state

variables. Specification:

[](willSucceed(contract.allowance(owner, spender)) ==>

 <>(finished(contract.allowance(owner, spender), _totalSupply == old(_totalSupply)

 && _balances == old(_balances) && _allowances == old(_allowances) &&

 other_state_variables == old(other_state_variables))))

Properties related to function approve

erc20-approve-revert-zero

approve Prevents Approvals For the Zero Address. All calls of the form approve(spender, amount) must fail if the

address in spender is the zero address. Specification:

[](started(contract.approve(spender, value), spender == address(0)) ==>

 <>(reverted(contract.approve) || finished(contract.approve(spender, value),

 return == false)))

erc20-approve-succeed-normal

approve Succeeds for Admissible Inputs. All calls of the form approve(spender, amount) must succeed, if

the address in spender is not the zero address and

the execution does not run out of gas. Specification:

[](started(contract.approve(spender, value), spender != address(0)) ==>

 <>(finished(contract.approve(spender, value), return == true)))

erc20-approve-correct-amount

approve Updates the Approval Mapping Correctly. All non-reverting calls of the form approve(spender, amount) that

return true must correctly update the allowance mapping according to the address msg.sender and the values of

spender and amount . Specification:

APPENDIX TOMI

[](willSucceed(contract.approve(spender, value), spender != address(0) && value >=

 0 && value <

 0x100) ==>

 <>(finished(contract.approve(spender, value), return == true ==>

 _allowances[msg.sender][spender] == value)))

erc20-approve-change-state

approve Has No Unexpected State Changes. All calls of the form approve(spender, amount) must only update the

allowance mapping according to the address msg.sender and the values of spender and amount and incur no other

state changes. Specification:

[](willSucceed(contract.approve(spender, value), spender != address(0) && (p1 !=

 msg.sender || p2 != spender)) ==> <>(finished(contract.approve(spender,

 value), return == true ==> _totalSupply == old(_totalSupply) && _balances

 == old(_balances) && _allowances[p1][p2] == old(_allowances[p1][p2]) &&

 other_state_variables == old(other_state_variables))))

erc20-approve-false

If approve Returns false , the Contract's State Is Unchanged. If function approve returns false to signal a failure, it

must undo all state changes that it incurred before returning to the caller. Specification:

[](willSucceed(contract.approve(spender, value)) ==>

 <>(finished(contract.approve(spender, value), return == false ==> (_balances ==

 old(_balances) && _totalSupply == old(_totalSupply) && _allowances ==

 old(_allowances) && other_state_variables == old(other_state_variables)))))

erc20-approve-never-return-false

approve Never Returns false . The function approve must never returns false . Specification:

[](!(finished(contract.approve, return == false)))

APPENDIX TOMI

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, condentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER TOMI

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER TOMI

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Tomi Security Assessment CertiK Verified on Mar 6th, 2023 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

